Stem Cells Research - Stem Cells in Science, Medicine, Biology and Bioethics
stem_cells bioethics
  Site Home
  Previous Page
Sponsored Links
Stem Cells - Biology
Stem Cells - Medicine
Link Exchange, Links Swap, Reciprocal Link Trade

Section Navigation

stem_cells

stem cells

Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make. Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development. Examining the chromosomes under a microscope.


stem cells in biomedicine

Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make. Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development. Examining the chromosomes under a microscope.


Determining whether the cells can be subcultured after freezing, thawing, and replating. testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form specific cell types; or 3) injecting the cells into an immunosuppressed mouse to test for the formation of a benign tumor called a teratoma.


stem cells

However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells.

stem cells in biomedicine

Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory.


stem cell research

In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.


stem cells in biomedicine

Examples of such plasticity include blood cells becoming neurons, liver cells that can be made to produce insulin, and hematopoietic stem cells that can develop into heart muscle.


stem cells in biomedicine

Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described. Stem cells differ from other kinds of cells in the body.


stem cells in biomedicine

Scientists are just beginning to understand the signals inside and outside cells that trigger stem cell differentiation. The internal signals are controlled by a cell's genes, which are interspersed across long strands of DNA, and carry coded instructions for all the structures and functions of a cell. The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment.


Specifically, embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitro � in an in vitro fertilization clinic � and then donated for research purposes with informed consent of the donors.


When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function. Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease.


In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

stem cells



6DB207AF-D11F-4DB6-812E-0E9DEC7172CC
EF6B546E-9D79-4E5F-B2CF-4DDD559C7799
6080247C-F536-4C26-0B31-09AC4B1D98C2
0EE01672-E61F-48E1-BB27-011372BCF939
2672F1BA-293A-4666-8EF7-04DF165DA927
CD85BCB6-95CD-4EF4-A677-08DA5582469B
237A0057-B262-4C93-87BF-A5AA425C4671
41A132DD-68DB-442E-8E64-080294E8991F
0D214458-EF32-4274-82E3-0528E4A41376
59D1EA73-B8A7-4B78-A94B-28E7CCE7B623
A9E6F57D-4AFA-4E33-96B3-02D38B18DD18
282D0D7D-6832-439D-BAE4-0C7EA5749442
4EF71A5A-86FB-472C-B35C-90C47D3F107E
6B7FD60C-B05D-4E2E-0A54-07561571B591
A94F5634-6EF8-4828-95C1-0A5934BAD99A
D281215F-5F06-4B92-AB79-0248123F1DF8
688B15DC-F32E-4E2F-AEDD-0F1C07C2547E
3A268318-969E-4245-BE7F-D5AC1C699411
7D79CE10-E4CE-42B8-085B-09456789377B
F5A76E99-E7C6-4BDE-85CA-AE94DF9E9E16
4EB684FA-485E-412F-BE81-09F5EA613EC1
85FDF586-B9DF-4993-99E8-D691E68CC24A
859E13AA-8D53-49CB-AE36-EF80C337BCD5
E116FE7D-0C67-4141-8678-0C653C799634
9BB8E743-5D66-4612-886D-19DE4C4EAE2A
4FBB04AB-425A-41E4-0813-1BBC58B3F42F
B0166A84-3929-4AE2-A911-AE8759F0A09E
5E5F3167-7E57-48AA-81B3-E2B391389729
95478366-9299-4CE5-B0CE-07B230EA6959
B2C48F96-7085-411E-A5C2-0B7EF23CE5D3
ED250A3C-1726-45BB-8EC3-056EB7534E7E
30150F57-E32B-4F3C-BE1D-0EDF82DC9434
B39A1D12-2C31-4C1F-ACBC-0238C927F95A
95726430-F9EE-4E43-8971-006CE1CC511F
7D490684-9D48-4C44-B06C-EDCAF9FEE940
B5A7CB80-7633-472D-9428-EE7BA1E246FB
6ACBE2AD-86E8-4265-0935-6FE6C1F94F25
02B56388-2C86-419F-9967-06F4161A9CE5
34F636CA-D72A-4873-A57B-E64473D3F186
3FD1527E-3B5B-4B59-B557-0947B765FD62
B874751D-0519-4214-B5D7-08D5AA52F196
869EE28B-C252-4B90-9A2D-0CCD618BC9F1
3E5DCA44-15F8-4B46-B9AA-1C2319DA6687
6F436997-A3F9-4006-9AF4-80612C89126D
4FF96130-4750-4EFA-BF95-FD596BC537AF
C4A95707-10F3-4EE9-0A75-66CA85C510F3
6647430D-0E63-4FF2-8CD8-315EE9557E97
49353B83-D054-4295-B9FE-BF6233E5695D
3BA6061B-78ED-411A-823B-3B647BEECD30
E8178E11-D75D-41E8-0BA9-30C4E188C7B4
EBC38DE4-A522-47D8-B789-075FB35B5012
CF635F14-5C2E-4EA8-BF8F-A54495D3B6DE
BC6A3FFD-1112-4D36-9B26-0AF76BC3E485
D56D1064-D141-45BC-B79C-CEB6CED0CFD7
65833697-4D43-4458-8BD4-BFD3B9AEA1FE
1008C094-E4B8-453B-806C-C036AD84468C
575BB5A3-02A1-4B7B-8C9A-8F49206830AC
FC4C9E93-4DDD-444B-089B-76D9BB57B2AD
78CE2200-4605-47C8-B2E4-F46B6FF04A99
E0F541D2-8E4E-45F0-9B80-0F856B3E7DFE
E92A12FD-90A0-4CFE-9117-0A36BCD1E4B3
75BC63A7-54CB-431D-B9DC-D4EBC5B0F3A3
6951C309-0E3F-4E11-B17F-00B9032238DF
06FE6936-5F4D-4C80-9834-0E644848F479
F18F088D-C2E4-43A4-AC74-F7913FC04EAD
A69EC2D7-96E1-4624-AC9B-019BEE38ECA4
F7C4EBBA-E42A-4A59-BD2D-0B0543BED424
D1A1F5CC-04FA-4D39-9C27-629A77757E88
A3C351F1-9A52-4F04-9B1C-CDB3385A7EB9
CDED0B77-DE3F-44B0-A895-AF2745978BE8
0C206FDA-BAE7-43FE-8523-003DE309C6A2
8E7AF71B-586E-4CAE-869C-EDFD1D66E319
5F6A0D09-C1F6-4E66-BEE6-0214E962D580
B81F524E-63D5-4009-0B1D-8D7399E0E031
309465E4-44EC-47B9-913C-553BB0368413
71CD7369-3264-482F-B7AA-6620C87D4DFD
85A3B5C3-93B3-4C50-98D3-774BC5AA9F27
68AC5E7B-8117-4E83-9EDE-0944DD967ABA
44277EA9-2CD3-445C-8163-928686DDD1AE
7BC3D65B-1E15-4CBD-9B53-000ECAE913E6
B32D457B-804F-4C60-B32E-7158E1253DF2
BF06B164-C1A6-4EAF-090F-935AD1E841DD
0061043F-8F0D-4954-81F8-0D887B973097
33DFC78F-048C-4CB9-9071-01FD8861F678
171C8DE6-FE08-4027-BA5B-86D077C37916
02FABFFC-13D3-4157-8D4D-02FEED38A27B
A81403AB-4580-4EB6-A774-5533A9D6E4AB
F5685727-6481-4F16-8F47-C336539060AB



ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

stem_cells | bioethics
Stem Cells are a Great Promise for the Future of Medicine!
Stem Cells Research
X -PoppiLinx - ICL