stem cells |
Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make. Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development.
Examining the chromosomes under a microscope. |
|
|
Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make. Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development.
Examining the chromosomes under a microscope. |
|
Determining whether the cells can be subcultured after freezing, thawing, and replating.
testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form specific cell types; or 3) injecting the cells into an immunosuppressed mouse to test for the formation of a benign tumor called a teratoma. |
|
stem cells |
However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells. | |
|
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. |
|
stem cell research |
In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function. |
|
stem cells in biomedicine |
Examples of such plasticity include blood cells becoming neurons, liver cells that can be made to produce insulin, and hematopoietic stem cells that can develop into heart muscle. |
|
stem cells in biomedicine |
Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. |
|
stem cells in biomedicine |
Scientists are just beginning to understand the signals inside and outside cells that trigger stem cell differentiation. The internal signals are controlled by a cell's genes, which are interspersed across long strands of DNA, and carry coded instructions for all the structures and functions of a cell. The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment. |
|
Specifically, embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitro � in an in vitro fertilization clinic � and then donated for research purposes with informed consent of the donors. |
|
When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.
Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease. |
|
In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease. | |
|