When cells replicate themselves many times over it is called proliferation. A starting population of stem cells that proliferates for many months in the laboratory can yield millions of cells. If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.
The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists. |
|
Recently, scientists have begun to devise ways of growing embryonic stem cells without the mouse feeder cells. |
|
This is a significant scientific advancement because of the risk that viruses or other macromolecules in the mouse cells may be transmitted to the human cells.
Over the course of several days, the cells of the inner cell mass proliferate and begin to crowd the culture dish. When this occurs, they are removed gently and plated into several fresh culture dishes. The process of replating the cells is repeated many times and for many months, and is called subculturing. |
|
stem cells |
Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development.
Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. |
|
Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. A blood-forming adult stem cell in the bone marrow, for example, normally gives rise to the many types of blood cells such as red blood cells, white blood cells and platelets. |
|
Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer. |
|
However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells.
Stem cells are capable of dividing and renewing themselves for long periods. Unlike muscle cells, blood cells, or nerve cells � which do not normally replicate themselves � stem cells may replicate many times. When cells replicate themselves many times over it is called proliferation. |
|
stem cells in biomedicine |
Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions. Nevertheless, laboratories that grow human embryonic stem cell lines use several kinds of tests. These tests include.
Growing and subculturing the stem cells for many months. |
|
Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions. Nevertheless, laboratories that grow human embryonic stem cell lines use several kinds of tests. These tests include.
Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. | |
|
| However, a number of experiments over the last several years have raised the possibility that stem cells from one tissue may be able to give rise to cell types of a completely different tissue, a phenomenon known as plasticity. Examples of such plasticity include blood cells becoming neurons, liver cells that can be made to produce insulin, and hematopoietic stem cells that can develop into heart muscle. |
|