Stem Cells Research - Stem Cells in Science, Medicine, Biology and Bioethics
stem_cells bioethics
  Site Home
  Previous Page
Sponsored Links
Stem Cells - Biology
Stem Cells - Medicine
Link Exchange, Links Swap, Reciprocal Link Trade

Section Navigation

stem_cells

The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described. Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types. Stem Cells for the Future Treatment of Parkinson's Disease Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age.


PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation.


Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make.

stem cells

stem cells

Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer.


stem cells

Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated. Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make.


stem cells in biomedicine

Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions.


This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. It does not detect genetic mutations in the cells. Determining whether the cells can be subcultured after freezing, thawing, and replating. testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form specific cell types; or 3) injecting the cells into an immunosuppressed mouse to test for the formation of a benign tumor called a teratoma.


stem cell research

Over the course of several days, the cells of the inner cell mass proliferate and begin to crowd the culture dish. When this occurs, they are removed gently and plated into several fresh culture dishes. The process of replating the cells is repeated many times and for many months, and is called subculturing.


If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal. The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists.


Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. Such information is critical for scientists to be able to grow large numbers of unspecialized stem cells in the laboratory for further experimentation.


In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.


Up to Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell).


Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus. Adult stem cells typically generate the cell types of the tissue in which they reside. A blood-forming adult stem cell in the bone marrow, for example, normally gives rise to the many types of blood cells such as red blood cells, white blood cells and platelets. Until recently, it had been thought that a blood-forming cell in the bone marrow � which is called a hematopoietic stem cell � could not give rise to the cells of a very different tissue, such as nerve cells in the brain.


stem cell research

One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell).


Until recently, it had been thought that a blood-forming cell in the bone marrow � which is called a hematopoietic stem cell � could not give rise to the cells of a very different tissue, such as nerve cells in the brain. However, a number of experiments over the last several years have raised the possibility that stem cells from one tissue may be able to give rise to cell types of a completely different tissue, a phenomenon known as plasticity.


A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells. Stem cells are capable of dividing and renewing themselves for long periods.




6DB207AF-D11F-4DB6-812E-0E9DEC7172CC
EF6B546E-9D79-4E5F-B2CF-4DDD559C7799
6080247C-F536-4C26-0B31-09AC4B1D98C2
0EE01672-E61F-48E1-BB27-011372BCF939
2672F1BA-293A-4666-8EF7-04DF165DA927
CD85BCB6-95CD-4EF4-A677-08DA5582469B
237A0057-B262-4C93-87BF-A5AA425C4671
41A132DD-68DB-442E-8E64-080294E8991F
0D214458-EF32-4274-82E3-0528E4A41376
59D1EA73-B8A7-4B78-A94B-28E7CCE7B623
A9E6F57D-4AFA-4E33-96B3-02D38B18DD18
282D0D7D-6832-439D-BAE4-0C7EA5749442
4EF71A5A-86FB-472C-B35C-90C47D3F107E
6B7FD60C-B05D-4E2E-0A54-07561571B591
A94F5634-6EF8-4828-95C1-0A5934BAD99A
D281215F-5F06-4B92-AB79-0248123F1DF8
688B15DC-F32E-4E2F-AEDD-0F1C07C2547E
3A268318-969E-4245-BE7F-D5AC1C699411
7D79CE10-E4CE-42B8-085B-09456789377B
F5A76E99-E7C6-4BDE-85CA-AE94DF9E9E16
4EB684FA-485E-412F-BE81-09F5EA613EC1
85FDF586-B9DF-4993-99E8-D691E68CC24A
859E13AA-8D53-49CB-AE36-EF80C337BCD5
E116FE7D-0C67-4141-8678-0C653C799634
9BB8E743-5D66-4612-886D-19DE4C4EAE2A
4FBB04AB-425A-41E4-0813-1BBC58B3F42F
B0166A84-3929-4AE2-A911-AE8759F0A09E
5E5F3167-7E57-48AA-81B3-E2B391389729
95478366-9299-4CE5-B0CE-07B230EA6959
B2C48F96-7085-411E-A5C2-0B7EF23CE5D3
ED250A3C-1726-45BB-8EC3-056EB7534E7E
30150F57-E32B-4F3C-BE1D-0EDF82DC9434
B39A1D12-2C31-4C1F-ACBC-0238C927F95A
95726430-F9EE-4E43-8971-006CE1CC511F
7D490684-9D48-4C44-B06C-EDCAF9FEE940
B5A7CB80-7633-472D-9428-EE7BA1E246FB
6ACBE2AD-86E8-4265-0935-6FE6C1F94F25
02B56388-2C86-419F-9967-06F4161A9CE5
34F636CA-D72A-4873-A57B-E64473D3F186
3FD1527E-3B5B-4B59-B557-0947B765FD62
B874751D-0519-4214-B5D7-08D5AA52F196
869EE28B-C252-4B90-9A2D-0CCD618BC9F1
3E5DCA44-15F8-4B46-B9AA-1C2319DA6687
6F436997-A3F9-4006-9AF4-80612C89126D
4FF96130-4750-4EFA-BF95-FD596BC537AF
C4A95707-10F3-4EE9-0A75-66CA85C510F3
6647430D-0E63-4FF2-8CD8-315EE9557E97
49353B83-D054-4295-B9FE-BF6233E5695D
3BA6061B-78ED-411A-823B-3B647BEECD30
E8178E11-D75D-41E8-0BA9-30C4E188C7B4
EBC38DE4-A522-47D8-B789-075FB35B5012
CF635F14-5C2E-4EA8-BF8F-A54495D3B6DE
BC6A3FFD-1112-4D36-9B26-0AF76BC3E485
D56D1064-D141-45BC-B79C-CEB6CED0CFD7



ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

stem_cells | bioethics
Stem Cells are a Great Promise for the Future of Medicine!
Stem Cells Research
X -PopiLinx - ICL