Stem Cells Research - Stem Cells in Science, Medicine, Biology and Bioethics
stem_cells bioethics
  Site Home
  Previous Page
Sponsored Links
Stem Cells - Biology
Stem Cells - Medicine
Link Exchange, Links Swap, Reciprocal Link Trade

Section Navigation

stem_cells

stem cells

Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease.


In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons. In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.

stem cells

These are called human embryonic stem cells. The embryos used in these studies were created for infertility purposes through in vitro fertilization procedures and when they were no longer needed for that purpose, they were donated for research with the informed consent of the donor.


This process is called characterization. As yet, scientists who study human embryonic stem cells have not agreed on a standard battery of tests that measure the cells' fundamental properties. Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions.


This coating layer of cells is called a feeder layer. The reason for having the mouse cells in the bottom of the culture dish is to give the inner cell mass cells a sticky surface to which they can attach.


Growing cells in the laboratory is known as cell culture. Human embryonic stem cells are isolated by transferring the inner cell mass into a plastic laboratory culture dish that contains a nutrient broth known as culture medium.


Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer.


A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell).


stem cell research

Stem cells are important for living organisms for many reasons. In the 3 to 5 day old embryo, called a blastocyst, a small group of about 30 cells called the inner cell mass gives rise to the hundreds of highly specialized cells needed to make up an adult organism.


For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue.


All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types. Stem Cells for the Future Treatment of Parkinson's Disease Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age.


Once cell lines are established, or even before that stage, batches of them can be frozen and shipped to other laboratories for further culture and experimentation. At various points during the process of generating embryonic stem cell lines, scientists test the cells to see whether they exhibit the fundamental properties that make them embryonic stem cells.




6DB207AF-D11F-4DB6-812E-0E9DEC7172CC
EF6B546E-9D79-4E5F-B2CF-4DDD559C7799
6080247C-F536-4C26-0B31-09AC4B1D98C2
0EE01672-E61F-48E1-BB27-011372BCF939
2672F1BA-293A-4666-8EF7-04DF165DA927
CD85BCB6-95CD-4EF4-A677-08DA5582469B
237A0057-B262-4C93-87BF-A5AA425C4671
41A132DD-68DB-442E-8E64-080294E8991F
0D214458-EF32-4274-82E3-0528E4A41376
59D1EA73-B8A7-4B78-A94B-28E7CCE7B623
A9E6F57D-4AFA-4E33-96B3-02D38B18DD18
282D0D7D-6832-439D-BAE4-0C7EA5749442
4EF71A5A-86FB-472C-B35C-90C47D3F107E
6B7FD60C-B05D-4E2E-0A54-07561571B591
A94F5634-6EF8-4828-95C1-0A5934BAD99A
D281215F-5F06-4B92-AB79-0248123F1DF8
688B15DC-F32E-4E2F-AEDD-0F1C07C2547E
3A268318-969E-4245-BE7F-D5AC1C699411
7D79CE10-E4CE-42B8-085B-09456789377B
F5A76E99-E7C6-4BDE-85CA-AE94DF9E9E16
4EB684FA-485E-412F-BE81-09F5EA613EC1
85FDF586-B9DF-4993-99E8-D691E68CC24A
859E13AA-8D53-49CB-AE36-EF80C337BCD5
E116FE7D-0C67-4141-8678-0C653C799634
9BB8E743-5D66-4612-886D-19DE4C4EAE2A
4FBB04AB-425A-41E4-0813-1BBC58B3F42F
B0166A84-3929-4AE2-A911-AE8759F0A09E
5E5F3167-7E57-48AA-81B3-E2B391389729
95478366-9299-4CE5-B0CE-07B230EA6959
B2C48F96-7085-411E-A5C2-0B7EF23CE5D3
ED250A3C-1726-45BB-8EC3-056EB7534E7E
30150F57-E32B-4F3C-BE1D-0EDF82DC9434
B39A1D12-2C31-4C1F-ACBC-0238C927F95A
95726430-F9EE-4E43-8971-006CE1CC511F
7D490684-9D48-4C44-B06C-EDCAF9FEE940
B5A7CB80-7633-472D-9428-EE7BA1E246FB
6ACBE2AD-86E8-4265-0935-6FE6C1F94F25
02B56388-2C86-419F-9967-06F4161A9CE5
34F636CA-D72A-4873-A57B-E64473D3F186
3FD1527E-3B5B-4B59-B557-0947B765FD62
B874751D-0519-4214-B5D7-08D5AA52F196
869EE28B-C252-4B90-9A2D-0CCD618BC9F1
3E5DCA44-15F8-4B46-B9AA-1C2319DA6687
6F436997-A3F9-4006-9AF4-80612C89126D
4FF96130-4750-4EFA-BF95-FD596BC537AF
C4A95707-10F3-4EE9-0A75-66CA85C510F3
6647430D-0E63-4FF2-8CD8-315EE9557E97
49353B83-D054-4295-B9FE-BF6233E5695D
3BA6061B-78ED-411A-823B-3B647BEECD30
E8178E11-D75D-41E8-0BA9-30C4E188C7B4
EBC38DE4-A522-47D8-B789-075FB35B5012
CF635F14-5C2E-4EA8-BF8F-A54495D3B6DE
BC6A3FFD-1112-4D36-9B26-0AF76BC3E485
D56D1064-D141-45BC-B79C-CEB6CED0CFD7
65833697-4D43-4458-8BD4-BFD3B9AEA1FE
1008C094-E4B8-453B-806C-C036AD84468C
575BB5A3-02A1-4B7B-8C9A-8F49206830AC
FC4C9E93-4DDD-444B-089B-76D9BB57B2AD
78CE2200-4605-47C8-B2E4-F46B6FF04A99
E0F541D2-8E4E-45F0-9B80-0F856B3E7DFE
E92A12FD-90A0-4CFE-9117-0A36BCD1E4B3
75BC63A7-54CB-431D-B9DC-D4EBC5B0F3A3
6951C309-0E3F-4E11-B17F-00B9032238DF
06FE6936-5F4D-4C80-9834-0E644848F479
F18F088D-C2E4-43A4-AC74-F7913FC04EAD
A69EC2D7-96E1-4624-AC9B-019BEE38ECA4
F7C4EBBA-E42A-4A59-BD2D-0B0543BED424
D1A1F5CC-04FA-4D39-9C27-629A77757E88
A3C351F1-9A52-4F04-9B1C-CDB3385A7EB9
CDED0B77-DE3F-44B0-A895-AF2745978BE8
0C206FDA-BAE7-43FE-8523-003DE309C6A2
8E7AF71B-586E-4CAE-869C-EDFD1D66E319
5F6A0D09-C1F6-4E66-BEE6-0214E962D580
B81F524E-63D5-4009-0B1D-8D7399E0E031
309465E4-44EC-47B9-913C-553BB0368413
71CD7369-3264-482F-B7AA-6620C87D4DFD
85A3B5C3-93B3-4C50-98D3-774BC5AA9F27
68AC5E7B-8117-4E83-9EDE-0944DD967ABA
44277EA9-2CD3-445C-8163-928686DDD1AE
7BC3D65B-1E15-4CBD-9B53-000ECAE913E6
B32D457B-804F-4C60-B32E-7158E1253DF2
BF06B164-C1A6-4EAF-090F-935AD1E841DD
0061043F-8F0D-4954-81F8-0D887B973097
33DFC78F-048C-4CB9-9071-01FD8861F678
171C8DE6-FE08-4027-BA5B-86D077C37916
02FABFFC-13D3-4157-8D4D-02FEED38A27B
A81403AB-4580-4EB6-A774-5533A9D6E4AB
F5685727-6481-4F16-8F47-C336539060AB
B89216A8-A5BA-48A2-8894-0726C2396777
812FB20E-17B7-4483-A965-1C684EF6B125
842F8EAC-FD71-452B-BF31-00ACD4148EC5
C4D7900E-6BCD-48C1-A3F8-017EDBF71F35
6D27AA45-A3DC-4EED-94FB-B2EC86393C54
EFC76AEA-91FD-4F2F-9AE3-03103474D52C
57D441B3-C2FD-438F-823C-0C35365A2317
D909E1CF-FC31-4D64-AA9A-961974713C79
83E7E44A-69F4-4C34-AAFA-0F022C5E78AF
46ED8350-EE6F-4994-AD18-A1F51090E8E2
4D887F25-4254-410E-8D68-D3D929A07BD0
95D76E90-1EF3-4901-825A-073D3F714A3F
A23BDD42-07CB-4DF4-B83F-AE45EB252B1E
21ED22D9-4092-4390-A0EF-7961173174BB
48D879A9-6D00-4E29-A5E8-40C9B851AEB9
D0C84D38-C65E-45D9-9311-0B8DABFD9C51
39CBB25B-1866-4A7C-A28F-F43F15CC83D1
7C48F944-CCB8-419B-AD2F-C4DD616295F4
FC388668-6944-4D69-B346-005BCFF51115
21714301-C58E-42F9-BC75-B061DC5BE296
70ABA94A-3A1C-46EE-ACE8-7C8862179E6F
D2F456F1-8E9A-43AB-AF1F-F19AAAF9B4DD
CF9A9D3A-BBEB-4B8B-B478-2FB2DAF1C019
020B55C1-7305-4308-8077-F797E236B1A0
99773748-C108-4EAF-9613-7725F12EBD17
EABD1E51-DA45-4A1A-9F58-A491C1D19BE9
823D177E-3893-4430-9165-DE5ECA9BD62D
09721526-DE3A-46D5-9A9B-E97C2736D630
954CBA6C-2C9C-4727-0914-086E92DBE1B3
B9EFDF77-51CD-4159-8C42-3B847984EB66



ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

stem_cells | bioethics
Stem Cells are a Great Promise for the Future of Medicine!
Stem Cells Research
X -PLinx - 3001