stem cells |
The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem Cells for the Future Treatment of Parkinson's Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. |
|
| After six months or more, the original 30 cells of the inner cell mass yield millions of embryonic stem cells. Embryonic stem cells that have proliferated in cell culture for six or more months without differentiating, are pluripotent, and appear genetically normal, are referred to as an embryonic stem cell line.
Once cell lines are established, or even before that stage, batches of them can be frozen and shipped to other laboratories for further culture and experimentation. |
|
stem cells |
Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). |
|
stem cells |
When cells replicate themselves many times over it is called proliferation. A starting population of stem cells that proliferates for many months in the laboratory can yield millions of cells. If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.
The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists. |
|
Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus. |
|
Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem Cells for the Future Treatment of Parkinson's Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. |
|
It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons. |
|
Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development. | |
|
stem cell research |
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make. Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development.
Examining the chromosomes under a microscope. |
|
embryonic stem cells |
In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.
Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease. |
|
embryonic stem cells |
The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment.
Therefore, many questions about stem cell differentiation remain. For example, are the internal and external signals for cell differentiation similar for all kinds of stem cells? Can specific sets of signals be identified that promote differentiation into specific cell types? Addressing these questions is critical because the answers may lead scientists to find new ways of controlling stem cell differentiation in the laboratory, thereby growing cells or tissues that can be used for specific purposes including cell-based therapies. |
|
|
|
embryonic stem cells |
Also, the feeder cells release nutrients into the culture medium. Recently, scientists have begun to devise ways of growing embryonic stem cells without the mouse feeder cells. |
|
embryonic stem cells |
Many years of detailed study of the biology of mouse stem cells led to the discovery, in 1998, of how to isolate stem cells from human embryos and grow the cells in the laboratory. These are called human embryonic stem cells. |
|