stem cells |
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
| The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. |
|
| PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. |
|
The blastocyst includes three structures: the trophoblast, which is the layer of cells that surrounds the blastocyst; the blastocoel, which is the hollow cavity inside the blastocyst; and the inner cell mass, which is a group of approximately 30 cells at one end of the blastocoel. |
|
stem cells |
The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. |
|
stem cells in biomedicine |
In the 3 to 5 day old embryo, called a blastocyst, a small group of about 30 cells called the inner cell mass gives rise to the hundreds of highly specialized cells needed to make up an adult organism. In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. |
|
The internal signals are controlled by a cell's genes, which are interspersed across long strands of DNA, and carry coded instructions for all the structures and functions of a cell. The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment.
Therefore, many questions about stem cell differentiation remain. For example, are the internal and external signals for cell differentiation similar for all kinds of stem cells? Can specific sets of signals be identified that promote differentiation into specific cell types? Addressing these questions is critical because the answers may lead scientists to find new ways of controlling stem cell differentiation in the laboratory, thereby growing cells or tissues that can be used for specific purposes including cell-based therapies. |
|
When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function. |
|
For instance, if the starting stem cells are derived from the inner cell mass of the embryo, they can generate many cell types of the body derived from all three embryonic cell types: endoderm, mesoderm and ectoderm. Stem cells with this property are said to be pluripotent. Embryonic stem cells are one kind of pluripotent stem cell. Another cell type, embryonic germ cells are also pluripotent, but they are derived at a later stage of development. | |
|
stem cell research |
However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells.
Stem cells are capable of dividing and renewing themselves for long periods. Unlike muscle cells, blood cells, or nerve cells � which do not normally replicate themselves � stem cells may replicate many times. When cells replicate themselves many times over it is called proliferation. |
|
| Therefore, exploring the possibility of using adult stem cells for cell-based therapies has become a very active area of investigation by researchers.
Embryonic stem cells, as their name suggests, are derived from embryos. Specifically, embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitro � in an in vitro fertilization clinic � and then donated for research purposes with informed consent of the donors. |
|
These are called human embryonic stem cells. The embryos used in these studies were created for infertility purposes through in vitro fertilization procedures and when they were no longer needed for that purpose, they were donated for research with the informed consent of the donor.
Stem cells are important for living organisms for many reasons. |
|
Until recently, it had been thought that a blood-forming cell in the bone marrow � which is called a hematopoietic stem cell � could not give rise to the cells of a very different tissue, such as nerve cells in the brain. However, a number of experiments over the last several years have raised the possibility that stem cells from one tissue may be able to give rise to cell types of a completely different tissue, a phenomenon known as plasticity. |
|
It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. |
|
embryonic stem cells |
It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. |
|
Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. Such information is critical for scientists to be able to grow large numbers of unspecialized stem cells in the laboratory for further experimentation.
Stem cells can give rise to specialized cells. |
|
| It does not detect genetic mutations in the cells. Determining whether the cells can be subcultured after freezing, thawing, and replating.
testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form specific cell types; or 3) injecting the cells into an immunosuppressed mouse to test for the formation of a benign tumor called a teratoma. |
|
stem cells |
In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease. |
|
This process is called characterization.
As yet, scientists who study human embryonic stem cells have not agreed on a standard battery of tests that measure the cells' fundamental properties. Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions. |
|
stem cells in biomedicine |
This coating layer of cells is called a feeder layer. The reason for having the mouse cells in the bottom of the culture dish is to give the inner cell mass cells a sticky surface to which they can attach. |
|
This coating layer of cells is called a feeder layer. The reason for having the mouse cells in the bottom of the culture dish is to give the inner cell mass cells a sticky surface to which they can attach. |
|
|
|
Stem cells with this property are said to be pluripotent. Embryonic stem cells are one kind of pluripotent stem cell. Another cell type, embryonic germ cells are also pluripotent, but they are derived at a later stage of development. Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. |
|
|
|
embryonic stem cells |
In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease. | |
|