stem cells |
It has been hypothesized by scientists that stem cells may, at some point in the future, become the basis for treating diseases such as Parkinson's disease, diabetes, and heart disease.
Scientists want to study stem cells in the laboratory so they can learn about their essential properties and what makes them different from specialized cell types. As scientists learn more about stem cells, it may become possible to use the cells not just in cell-based therapies, but also for screening new drugs and toxins and understanding birth defects. |
|
Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. |
|
PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. | |
|
Stem cells can give rise to specialized cells. When unspecialized stem cells give rise to specialized cells, the process is called differentiation. Scientists are just beginning to understand the signals inside and outside cells that trigger stem cell differentiation. The internal signals are controlled by a cell's genes, which are interspersed across long strands of DNA, and carry coded instructions for all the structures and functions of a cell. |
|
Over the course of several days, the cells of the inner cell mass proliferate and begin to crowd the culture dish. When this occurs, they are removed gently and plated into several fresh culture dishes. The process of replating the cells is repeated many times and for many months, and is called subculturing. Each cycle of subculturing the cells is referred to as a passage. |
|
Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). |
|
The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future.
Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer. |
|
The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future.
Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer. |
|
stem cells in biomedicine |
However, as mentioned above, human embryonic stem cells have only been studied since 1998. Therefore, in order to develop such treatments scientists are intensively studying the fundamental properties of stem cells, which include:
1) determining precisely how stem cells remain unspecialized and self renewing for many years; and 2) identifying the signals that cause stem cells to become specialized cells.
This primer on stem cells is intended for anyone who wishes to learn more about the biological properties of stem cells, the important questions about stem cells that are the focus of scientific research, and the potential use of stem cells in research and in treating disease. |
|
stem cells in biomedicine |
However, as mentioned above, human embryonic stem cells have only been studied since 1998. Therefore, in order to develop such treatments scientists are intensively studying the fundamental properties of stem cells, which include:
1) determining precisely how stem cells remain unspecialized and self renewing for many years; and 2) identifying the signals that cause stem cells to become specialized cells.
This primer on stem cells is intended for anyone who wishes to learn more about the biological properties of stem cells, the important questions about stem cells that are the focus of scientific research, and the potential use of stem cells in research and in treating disease. |
|
Scientists primarily work with two kinds of stem cells from animals and humans: embryonic stem cells and adult stem cells, which have different functions and characteristics that will be explained in this document. |
|
embryonic stem cells |
Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development.
Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. |
|
embryonic stem cells |
Once cell lines are established, or even before that stage, batches of them can be frozen and shipped to other laboratories for further culture and experimentation.
At various points during the process of generating embryonic stem cell lines, scientists test the cells to see whether they exhibit the fundamental properties that make them embryonic stem cells. | |
|
embryonic stem cells |
It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons. |
|
It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. |
|
Scientists discovered ways to obtain or derive stem cells from early mouse embryos more than 20 years ago. Many years of detailed study of the biology of mouse stem cells led to the discovery, in 1998, of how to isolate stem cells from human embryos and grow the cells in the laboratory. |
|