Therefore, many questions about stem cell differentiation remain. For example, are the internal and external signals for cell differentiation similar for all kinds of stem cells? Can specific sets of signals be identified that promote differentiation into specific cell types? Addressing these questions is critical because the answers may lead scientists to find new ways of controlling stem cell differentiation in the laboratory, thereby growing cells or tissues that can be used for specific purposes including cell-based therapies. |
|
stem cells |
The cells divide and spread over the surface of the dish. The inner surface of the culture dish is typically coated with mouse embryonic skin cells that have been treated so they will not divide. | |
|
It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons. |
|
stem cells |
Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. A blood-forming adult stem cell in the bone marrow, for example, normally gives rise to the many types of blood cells such as red blood cells, white blood cells and platelets. |
|
This is a significant scientific advancement because of the risk that viruses or other macromolecules in the mouse cells may be transmitted to the human cells.
Over the course of several days, the cells of the inner cell mass proliferate and begin to crowd the culture dish. |
|
stem cell research |
However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells.
Stem cells are capable of dividing and renewing themselves for long periods. Unlike muscle cells, blood cells, or nerve cells � which do not normally replicate themselves � stem cells may replicate many times. |
|
| Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
|
|
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
stem cell research |
Once cell lines are established, or even before that stage, batches of them can be frozen and shipped to other laboratories for further culture and experimentation.
At various points during the process of generating embryonic stem cell lines, scientists test the cells to see whether they exhibit the fundamental properties that make them embryonic stem cells. |
|
When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.
Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease. |
|
| The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem Cells for the Future Treatment of Parkinson's Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. |
|
embryonic stem cells |
Scientists primarily work with two kinds of stem cells from animals and humans: embryonic stem cells and adult stem cells, which have different functions and characteristics that will be explained in this document. Scientists discovered ways to obtain or derive stem cells from early mouse embryos more than 20 years ago. |
|
A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). | |
|
embryonic stem cells |
Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions. |
|
stem cells |
These tests include.
Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated.
Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. Another important test is for the presence of a protein called Oct-4, which undifferentiated cells typically make. |
|
stem cells in biomedicine |
If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.
The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists. It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. |
|
Examples of such plasticity include blood cells becoming neurons, liver cells that can be made to produce insulin, and hematopoietic stem cells that can develop into heart muscle. Therefore, exploring the possibility of using adult stem cells for cell-based therapies has become a very active area of investigation by researchers. |
|
stem cell research |
It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. |
|
stem cell research |
For example, are the internal and external signals for cell differentiation similar for all kinds of stem cells? Can specific sets of signals be identified that promote differentiation into specific cell types? Addressing these questions is critical because the answers may lead scientists to find new ways of controlling stem cell differentiation in the laboratory, thereby growing cells or tissues that can be used for specific purposes including cell-based therapies. |
|
This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. It does not detect genetic mutations in the cells. Determining whether the cells can be subcultured after freezing, thawing, and replating.
testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form specific cell types; or 3) injecting the cells into an immunosuppressed mouse to test for the formation of a benign tumor called a teratoma. | |
|
| The blastocyst includes three structures: the trophoblast, which is the layer of cells that surrounds the blastocyst; the blastocoel, which is the hollow cavity inside the blastocyst; and the inner cell mass, which is a group of approximately 30 cells at one end of the blastocoel. |
|
Embryonic stem cells, as their name suggests, are derived from embryos. Specifically, embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitro � in an in vitro fertilization clinic � and then donated for research purposes with informed consent of the donors. |
|
testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form specific cell types; or 3) injecting the cells into an immunosuppressed mouse to test for the formation of a benign tumor called a teratoma. |
|
stem cells in bioethics |
This process is called characterization.
As yet, scientists who study human embryonic stem cells have not agreed on a standard battery of tests that measure the cells' fundamental properties. Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions. | |
|