Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease. The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future. |
|
stem cells |
Growing cells in the laboratory is known as cell culture. Human embryonic stem cells are isolated by transferring the inner cell mass into a plastic laboratory culture dish that contains a nutrient broth known as culture medium. |
|
PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). |
|
As scientists learn more about stem cells, it may become possible to use the cells not just in cell-based therapies, but also for screening new drugs and toxins and understanding birth defects. |
|
stem cells |
Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons. |
|
Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). |
|
|
|
The inner surface of the culture dish is typically coated with mouse embryonic skin cells that have been treated so they will not divide. This coating layer of cells is called a feeder layer. The reason for having the mouse cells in the bottom of the culture dish is to give the inner cell mass cells a sticky surface to which they can attach. Also, the feeder cells release nutrients into the culture medium. |
|