Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. |
|
Nevertheless, laboratories that grow human embryonic stem cell lines use several kinds of tests. These tests include.
Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated. |
|
Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). |
|
| Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons. |
|
It has been hypothesized by scientists that stem cells may, at some point in the future, become the basis for treating diseases such as Parkinson's disease, diabetes, and heart disease.
Scientists want to study stem cells in the laboratory so they can learn about their essential properties and what makes them different from specialized cell types. |
|
The internal signals are controlled by a cell's genes, which are interspersed across long strands of DNA, and carry coded instructions for all the structures and functions of a cell. The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment. |
|
stem cell research |
In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.
It has been hypothesized by scientists that stem cells may, at some point in the future, become the basis for treating diseases such as Parkinson's disease, diabetes, and heart disease. | |
|
stem cell research |
For instance, if the starting stem cells are derived from the inner cell mass of the embryo, they can generate many cell types of the body derived from all three embryonic cell types: endoderm, mesoderm and ectoderm. |
|
|
|
If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.
The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists. |
|