After six months or more, the original 30 cells of the inner cell mass yield millions of embryonic stem cells. Embryonic stem cells that have proliferated in cell culture for six or more months without differentiating, are pluripotent, and appear genetically normal, are referred to as an embryonic stem cell line.
Once cell lines are established, or even before that stage, batches of them can be frozen and shipped to other laboratories for further culture and experimentation. |
|
Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions. Nevertheless, laboratories that grow human embryonic stem cell lines use several kinds of tests. These tests include.
Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. |
|
stem cells |
For instance, if the starting stem cells are derived from the inner cell mass of the embryo, they can generate many cell types of the body derived from all three embryonic cell types: endoderm, mesoderm and ectoderm. Stem cells with this property are said to be pluripotent. |
|
| They are not derived from eggs fertilized in a woman's body. The embryos from which human embryonic stem cells are derived are typically four or five days old and are a hollow microscopic ball of cells called the blastocyst. The blastocyst includes three structures: the trophoblast, which is the layer of cells that surrounds the blastocyst; the blastocoel, which is the hollow cavity inside the blastocyst; and the inner cell mass, which is a group of approximately 30 cells at one end of the blastocoel. |
|
| The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future. |
|
Growing cells in the laboratory is known as cell culture. Human embryonic stem cells are isolated by transferring the inner cell mass into a plastic laboratory culture dish that contains a nutrient broth known as culture medium. |
|
stem cells in biomedicine |
Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. |
|
| For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. |
|
stem cells in biomedicine |
Each cycle of subculturing the cells is referred to as a passage. After six months or more, the original 30 cells of the inner cell mass yield millions of embryonic stem cells. Embryonic stem cells that have proliferated in cell culture for six or more months without differentiating, are pluripotent, and appear genetically normal, are referred to as an embryonic stem cell line. |
|
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. It does not detect genetic mutations in the cells. Determining whether the cells can be subcultured after freezing, thawing, and replating. |
|
|
|
| Until recently, it had been thought that a blood-forming cell in the bone marrow � which is called a hematopoietic stem cell � could not give rise to the cells of a very different tissue, such as nerve cells in the brain. However, a number of experiments over the last several years have raised the possibility that stem cells from one tissue may be able to give rise to cell types of a completely different tissue, a phenomenon known as plasticity. |
|
In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease. |
|
| Such information is critical for scientists to be able to grow large numbers of unspecialized stem cells in the laboratory for further experimentation.
Stem cells can give rise to specialized cells. When unspecialized stem cells give rise to specialized cells, the process is called differentiation. Scientists are just beginning to understand the signals inside and outside cells that trigger stem cell differentiation. |
|
First, they are unspecialized cells that renew themselves for long periods through cell division. The second is that under certain physiologic or experimental conditions, they can be induced to become cells with special functions such as the beating cells of the heart muscle or the insulin-producing cells of the pancreas. |
|
Determining whether the cells can be subcultured after freezing, thawing, and replating.
testing whether the human embryonic stem cells are pluripotent by 1) allowing the cells to differentiate spontaneously in cell culture; 2) manipulating the cells so they will differentiate to form specific cell types; or 3) injecting the cells into an immunosuppressed mouse to test for the formation of a benign tumor called a teratoma. | |
|