For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. |
|
stem cells |
It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. | |
|
At various points during the process of generating embryonic stem cell lines, scientists test the cells to see whether they exhibit the fundamental properties that make them embryonic stem cells. This process is called characterization.
As yet, scientists who study human embryonic stem cells have not agreed on a standard battery of tests that measure the cells' fundamental properties. |
|
Until recently, it had been thought that a blood-forming cell in the bone marrow � which is called a hematopoietic stem cell � could not give rise to the cells of a very different tissue, such as nerve cells in the brain. However, a number of experiments over the last several years have raised the possibility that stem cells from one tissue may be able to give rise to cell types of a completely different tissue, a phenomenon known as plasticity. |
|
stem cells |
In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease. |
|
However, a number of experiments over the last several years have raised the possibility that stem cells from one tissue may be able to give rise to cell types of a completely different tissue, a phenomenon known as plasticity. Examples of such plasticity include blood cells becoming neurons, liver cells that can be made to produce insulin, and hematopoietic stem cells that can develop into heart muscle. Therefore, exploring the possibility of using adult stem cells for cell-based therapies has become a very active area of investigation by researchers. |
|
| After six months or more, the original 30 cells of the inner cell mass yield millions of embryonic stem cells. Embryonic stem cells that have proliferated in cell culture for six or more months without differentiating, are pluripotent, and appear genetically normal, are referred to as an embryonic stem cell line.
Once cell lines are established, or even before that stage, batches of them can be frozen and shipped to other laboratories for further culture and experimentation. |
|
| Therefore, in order to develop such treatments scientists are intensively studying the fundamental properties of stem cells, which include:
1) determining precisely how stem cells remain unspecialized and self renewing for many years; and 2) identifying the signals that cause stem cells to become specialized cells.
This primer on stem cells is intended for anyone who wishes to learn more about the biological properties of stem cells, the important questions about stem cells that are the focus of scientific research, and the potential use of stem cells in research and in treating disease. |
|
stem cells in biomedicine |
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). |
|
These are called human embryonic stem cells. The embryos used in these studies were created for infertility purposes through in vitro fertilization procedures and when they were no longer needed for that purpose, they were donated for research with the informed consent of the donor. |
|
Also, scientists acknowledge that many of the tests they do use may not be good indicators of the cells' most important biological properties and functions. Nevertheless, laboratories that grow human embryonic stem cell lines use several kinds of tests. These tests include.
Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated. |
|
Therefore, many questions about stem cell differentiation remain. For example, are the internal and external signals for cell differentiation similar for all kinds of stem cells? Can specific sets of signals be identified that promote differentiation into specific cell types? Addressing these questions is critical because the answers may lead scientists to find new ways of controlling stem cell differentiation in the laboratory, thereby growing cells or tissues that can be used for specific purposes including cell-based therapies. |
|
|
|
embryonic stem cells |
Over the course of several days, the cells of the inner cell mass proliferate and begin to crowd the culture dish. When this occurs, they are removed gently and plated into several fresh culture dishes. The process of replating the cells is repeated many times and for many months, and is called subculturing. |
|