The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem Cells for the Future Treatment of Parkinson's Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. |
|
PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. |
|
Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated.
Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. | |
|
stem cells |
Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer. |
|
stem cells |
These tests include.
Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated.
Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. |
|
stem cells in biomedicine |
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. It does not detect genetic mutations in the cells. Determining whether the cells can be subcultured after freezing, thawing, and replating. |
|
stem cell research |
This is a significant scientific advancement because of the risk that viruses or other macromolecules in the mouse cells may be transmitted to the human cells.
Over the course of several days, the cells of the inner cell mass proliferate and begin to crowd the culture dish. |
|
A starting population of stem cells that proliferates for many months in the laboratory can yield millions of cells. If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.
The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists. |
|
For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. Therefore, an important area of research is understanding the signals in a mature organism that cause a stem cell population to proliferate and remain unspecialized until the cells are needed for repair of a specific tissue. |
|
In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons.
In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. |
|
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. A blood-forming adult stem cell in the bone marrow, for example, normally gives rise to the many types of blood cells such as red blood cells, white blood cells and platelets. |
|
|
|
Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). |
|
A blood-forming adult stem cell in the bone marrow, for example, normally gives rise to the many types of blood cells such as red blood cells, white blood cells and platelets. Until recently, it had been thought that a blood-forming cell in the bone marrow � which is called a hematopoietic stem cell � could not give rise to the cells of a very different tissue, such as nerve cells in the brain. |
|