Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. | |
|
stem cells |
Stem cells are important for living organisms for many reasons. In the 3 to 5 day old embryo, called a blastocyst, a small group of about 30 cells called the inner cell mass gives rise to the hundreds of highly specialized cells needed to make up an adult organism. In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. |
|
| They are not derived from eggs fertilized in a woman's body. The embryos from which human embryonic stem cells are derived are typically four or five days old and are a hollow microscopic ball of cells called the blastocyst. |
|
It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells. |
|
stem cells |
Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to
Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. |
|
The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment. |
|
| Stem cells with this property are said to be pluripotent. Embryonic stem cells are one kind of pluripotent stem cell. Another cell type, embryonic germ cells are also pluripotent, but they are derived at a later stage of development. |
|
Nevertheless, laboratories that grow human embryonic stem cell lines use several kinds of tests. These tests include.
Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated.
Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells. | |
|
stem cell research |
Many years of detailed study of the biology of mouse stem cells led to the discovery, in 1998, of how to isolate stem cells from human embryos and grow the cells in the laboratory. |
|
stem cell research |
Adult stem cells typically generate the cell types of the tissue in which they reside. A blood-forming adult stem cell in the bone marrow, for example, normally gives rise to the many types of blood cells such as red blood cells, white blood cells and platelets. |
|
| These are called human embryonic stem cells. The embryos used in these studies were created for infertility purposes through in vitro fertilization procedures and when they were no longer needed for that purpose, they were donated for research with the informed consent of the donor. |
|
| Examples of such plasticity include blood cells becoming neurons, liver cells that can be made to produce insulin, and hematopoietic stem cells that can develop into heart muscle. |
|
|
|
However, as mentioned above, human embryonic stem cells have only been studied since 1998. Therefore, in order to develop such treatments scientists are intensively studying the fundamental properties of stem cells, which include:
1) determining precisely how stem cells remain unspecialized and self renewing for many years; and 2) identifying the signals that cause stem cells to become specialized cells.
This primer on stem cells is intended for anyone who wishes to learn more about the biological properties of stem cells, the important questions about stem cells that are the focus of scientific research, and the potential use of stem cells in research and in treating disease. |
|
The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem Cells for the Future Treatment of Parkinson's Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. |
|
The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem Cells for the Future Treatment of Parkinson's Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. |
|
|
|
Stem cells with this property are said to be pluripotent. Embryonic stem cells are one kind of pluripotent stem cell. Another cell type, embryonic germ cells are also pluripotent, but they are derived at a later stage of development. Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus.
Adult stem cells typically generate the cell types of the tissue in which they reside. |
|
|
|
stem cells in biomedicine |
In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease. | |
|
The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future.
Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer. |
|
embryonic stem cells |
Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease. The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future. |
|
PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. |
|
stem cells in biomedicine |
Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development.
Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. It does not detect genetic mutations in the cells. Determining whether the cells can be subcultured after freezing, thawing, and replating. |
|
Growing cells in the laboratory is known as cell culture. Human embryonic stem cells are isolated by transferring the inner cell mass into a plastic laboratory culture dish that contains a nutrient broth known as culture medium. |
|