Stem Cells Research - Stem Cells in Science, Medicine, Biology and Bioethics
stem_cells bioethics
  Site Home
  Previous Page
Sponsored Links
Stem Cells - Biology
Stem Cells - Medicine
Link Exchange, Links Swap, Reciprocal Link Trade

Section Navigation

bioethics

Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus. Adult stem cells typically generate the cell types of the tissue in which they reside.

stem cells

stem cells

Stem cells are important for living organisms for many reasons. In the 3 to 5 day old embryo, called a blastocyst, a small group of about 30 cells called the inner cell mass gives rise to the hundreds of highly specialized cells needed to make up an adult organism. In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues.


stem cells

They are not derived from eggs fertilized in a woman's body. The embryos from which human embryonic stem cells are derived are typically four or five days old and are a hollow microscopic ball of cells called the blastocyst.


It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells.


stem cells

Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions.


The external signals for cell differentiation include chemicals secreted by other cells, physical contact with neighboring cells, and certain molecules in the microenvironment.


stem cells

Stem cells with this property are said to be pluripotent. Embryonic stem cells are one kind of pluripotent stem cell. Another cell type, embryonic germ cells are also pluripotent, but they are derived at a later stage of development.


Nevertheless, laboratories that grow human embryonic stem cell lines use several kinds of tests. These tests include. Growing and subculturing the stem cells for many months. This ensures that the cells are capable of long-term self-renewal. Scientists inspect the cultures through a microscope to see that the cells look healthy and remain undifferentiated. Using specific techniques to determine the presence of surface markers that are found only on undifferentiated cells.

stem cells in biomedicine

stem cell research

Many years of detailed study of the biology of mouse stem cells led to the discovery, in 1998, of how to isolate stem cells from human embryos and grow the cells in the laboratory.


stem cell research

Adult stem cells typically generate the cell types of the tissue in which they reside. A blood-forming adult stem cell in the bone marrow, for example, normally gives rise to the many types of blood cells such as red blood cells, white blood cells and platelets.


stem cell research

These are called human embryonic stem cells. The embryos used in these studies were created for infertility purposes through in vitro fertilization procedures and when they were no longer needed for that purpose, they were donated for research with the informed consent of the donor.


stem cell research

Examples of such plasticity include blood cells becoming neurons, liver cells that can be made to produce insulin, and hematopoietic stem cells that can develop into heart muscle.


stem cells in biomedicine

However, as mentioned above, human embryonic stem cells have only been studied since 1998. Therefore, in order to develop such treatments scientists are intensively studying the fundamental properties of stem cells, which include: 1) determining precisely how stem cells remain unspecialized and self renewing for many years; and 2) identifying the signals that cause stem cells to become specialized cells. This primer on stem cells is intended for anyone who wishes to learn more about the biological properties of stem cells, the important questions about stem cells that are the focus of scientific research, and the potential use of stem cells in research and in treating disease.


The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described. Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types. Stem Cells for the Future Treatment of Parkinson's Disease Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age.


The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described. Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types. Stem Cells for the Future Treatment of Parkinson's Disease Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age.


stem cell research

Stem cells with this property are said to be pluripotent. Embryonic stem cells are one kind of pluripotent stem cell. Another cell type, embryonic germ cells are also pluripotent, but they are derived at a later stage of development. Human embryonic stem cells are derived from the inner cell mass of a four- or five-day-old blastocyst. Human embryonic germ cells, in contrast, are derived from a five- to ten-week-old fetus. Adult stem cells typically generate the cell types of the tissue in which they reside.


stem cell research

stem cells in biomedicine

In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. In some adult tissues, such as bone marrow, muscle, and brain, discrete populations of adult stem cells generate replacements for cells that are lost through normal wear and tear, injury, or disease.

stem cells in biomedicine

The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future. Scientists are trying to understand two fundamental properties of stem cells that relate to their long-term self-renewal: 1) why can embryonic stem cells proliferate for a year or more in the laboratory without differentiating, but most adult stem cells cannot; and 2) what are the factors in living organisms that normally regulate stem cell proliferation and self-renewal? Discovering the answers to these questions may make it possible to understand how cell proliferation is regulated during normal embryonic development or during the abnormal cell division that leads to cancer.


embryonic stem cells

Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease. The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future.


PD is caused by a progressive degeneration and loss of dopamine (DA)-producing neurons, which leads to tremor, rigidity, and hypokinesia (abnormally decreased mobility). It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation.


stem cells in biomedicine

Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development. Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed. It does not detect genetic mutations in the cells. Determining whether the cells can be subcultured after freezing, thawing, and replating.


Growing cells in the laboratory is known as cell culture. Human embryonic stem cells are isolated by transferring the inner cell mass into a plastic laboratory culture dish that contains a nutrient broth known as culture medium.




7E6F3073-9887-4199-B09C-F75718B03F39
C8B6A194-6718-4226-859F-A15812B3927B
43248300-FA4E-4600-A141-6C80A29045EF
E77FA1D7-C29E-45BC-8379-4EBD2241AD25
7305C813-D9D4-4771-8744-0CE03970D521
2EA938F5-D203-482A-B6AF-15EE674FC0D5
15467C38-E472-48F9-A7EC-4E2AD424C63F
CF3151E9-C7A2-44FF-A7F4-33E34136A8A1
CB4763C6-C0EE-45C3-9D32-B9A32E57FE31
0657EE56-9602-49AF-8B17-504C4F796182
78E67B0B-2886-4121-AFE1-0602CA836584
FA6462D5-14E8-467C-AEBF-D617905D85B4
BF942E17-D42A-437B-8E1D-EE89EB7B7B3A
B429BD37-31A2-4868-B69D-A4B353345430
8CDF01AE-0491-4BE6-91A1-04E822B05DFE
5E37D445-5222-4B54-83D6-F1ADBFF24290
51C292AE-61C4-41AB-9726-096EAE855F4E
1E947455-9494-4935-AA67-A8A98943F5A5
889A1296-00A1-4630-8FC2-73CEB919CDC4
3363FB2D-7CE9-40B0-9F58-0D5EC9BE62E2
A07B8770-A947-4CD4-8CBD-05B7F96D9FA7
DEE4F58F-C67A-4B54-80B7-65ADBD36B249
B67964D5-F0C7-42A1-A0A2-8964E3473A4C
1DE20B84-89ED-4A20-8038-15B513215866
A3901853-9C81-4F87-A4A9-C581E176C0B2
2FC5064F-AFFE-4AA9-B6E0-C18EED933092
DC3938C5-790D-46E1-AB22-02C856339674
4BEC5FCA-6C16-45C9-994F-081D6DAFD18B
78754D28-C791-4F1B-9B12-A1862F1AF194
B2E0F7DC-1CE7-47B6-B030-B66F21FA77E0
11FAF851-3291-450C-0B2F-4A8BEE2F902E
A58B4497-D525-42D1-9AE9-3D88302043CF
53BFA402-4D29-47E1-B01B-A8C31BB6808D
E1726C62-2BB1-4B29-9082-51AFCB8AFB50
52C8F595-12A0-4DAF-0AEB-53C381D1E2BA
FF2F944D-3F10-4606-99F6-E96F4341BAEE
EB1D77D0-C271-4796-8FE4-B8C6AFAE9EE3
ECF12E0C-F8C3-4F8B-A5CF-35DC83416A28
42DAC8DD-6ABE-4130-B56B-0E05C931DCEF
1619E7EE-1BF1-4363-B46F-45EFF1A17E36
317D7D0C-75BD-40D8-B0D8-35C9D5C08AD0
2E3B9DC0-3D6B-4A63-A2E2-0C5723788307
897E4A46-CD86-4688-B3BF-FDDD21F8EA5B
E58C279B-A89C-4F0E-9E15-C4ECDC924F63
1FE57126-5B43-41ED-8B1C-73E0EA74F462
FB6E490E-D974-4237-B582-F7A58D394AE2
0C5D3B33-829F-4143-A4AF-00584C85BE8B
BEE0AEEB-6BC6-4B47-91A6-72C34792F9A1
9BB1BD17-5141-4903-09F6-9EAEB17F735F
5919CA9E-6FEB-404E-B74D-BBF914664A44
1EE0B063-A40E-437E-A349-00AB34A024D7
84BDD63A-EC00-4B61-9737-05813BA520DF
E4CC25E0-51C2-45F8-812E-00AF44C8D02F
C61F89AB-9C20-4708-99A1-009017757415
5B809878-91EC-44DC-96DF-14131D8FCC5D
4AD35CF1-B0A4-42FC-8F38-40DCBF1E6AC1
46B905EA-EFC3-48E2-9E39-0DFB4961EFBD
104B5EDB-6369-41E2-9B64-B5FFEDFAF663
122DD8F4-3E5D-49D1-B123-5F8F521ABA23
7BEEBB41-0A2D-4465-A71F-2A526D478B93
6BE61241-0E21-4FA7-91BD-0E742F8C30D4
A521A55E-837A-4E53-AE48-4C60E6211CAE
9F5F6388-E131-4475-AE2A-60342CC44F11
DE20C0D0-F372-4251-BA34-63A19CF4CB40
65A724E7-EAE5-41E7-B265-93BD85709DC1
1DC43DEC-0645-4531-A91B-0A88D549CAAC
C23CC75C-1158-41FD-9345-816DEAE6315A
93F96731-7BD6-4A7B-9CC2-3BFAECF64CFD
EF87B8F0-DA20-4B4F-871B-F561E35E1AED
03B38E25-D9CF-4F42-A32A-30529971706B
8E0489F6-67D6-4838-B03D-02718DA24995
A2FB8191-91A5-401B-9F67-F5A1384AE369
7422E147-352F-486B-96EC-B943CAE85039
36569C3A-5B4E-4D57-B9CA-65A267B0B5DE
606F69B4-0B0D-45E7-B6CE-01ADC87872D5
DABFF592-8FF5-4B71-8CA3-E6B36447CBBD
8D6E1640-F5DC-4C99-8C3E-0025A3F7BEB8
12250D90-8C18-4CFB-BD75-4D361780645C
EB8AABFA-E195-44DD-AE57-3FF3DE33EB41
DA583E48-3591-4227-B0D7-9269A6DBB3CA
AF368F4B-5A99-412C-A4AF-0F0A2DC46E27
F254C3F5-4344-48EF-9A1C-1441E6F5CD82
45AFF6EA-3C4C-418E-B486-00DE382C1315
B464A72F-DFB7-4A88-96EA-1CC29123E0E6
1636F85C-3C5A-44AA-B754-B7FAA4E0D867
78EDF777-82A3-470A-AD7D-22DE7AD2DC8C
BCB387B1-FA90-4D39-B229-C4FB9D58994E
5D415B5A-6E31-4DE9-AAA7-C410CEDDF623
03152FB2-7FAD-406A-B6D6-3E38196B45B3
97AC27C9-DAE2-4D10-B52A-BAEE493BFBE2
791C6C28-DAD6-49CC-9BE1-F2571DC035BD
2886CD65-7B74-4DA1-AB6C-1D52C0811D6C
B969A8DC-B948-47AB-8799-0B39854A96B1
42DC3375-9045-428D-9C1D-9B1B5786C35F
FE900124-5735-45D7-B197-252225953946
66B6B607-5D33-48D7-B2A2-B0CEFBA192B8
D93B6646-7C90-46B4-9A22-02489A1B4BBC
4F346683-F688-4DCE-9E69-EDE08F75238E
B447E68B-7735-4E28-B883-F4703B7838C8
23F4C66A-0583-44B3-0A9C-C27A98C559D0
A67144C1-C0A6-4091-A9EE-51CB1EEC2331
12DFA964-C663-42CA-B196-0D0174676CE3
CED60370-B907-4F5D-B6D0-6BB723C41FC0
14DE4EB7-E052-471D-8D6C-866694551221
C99401AA-CBC4-42E0-08FC-9D44877EFF3F
7FA15E85-9040-4852-BEC7-4E5F79D037B4
7DEFFEC1-F6E0-455D-0B10-77DF52BB58E1
CA12ACE3-97CA-43D4-A196-8B19FAE23D2F
B5B41E74-106E-4BB6-A614-AA9074416AB8
45064527-DA27-471F-BAE6-85D363F07C67



ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

stem_cells | bioethics
Stem Cells are a Great Promise for the Future of Medicine!
Stem Cells Research
X -PoppiLinx - ICL