When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.
Regarding human stem cell therapy, scientists are developing a number of strategies for producing dopamine neurons from human stem cells in the laboratory for transplantation into humans with Parkinson's disease. |
|
In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. |
|
The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described.
Stem cells differ from other kinds of cells in the body. All stem cells � regardless of their source � have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem Cells for the Future Treatment of Parkinson's Disease
Parkinson's disease (PD) is a very common neurodegenerative disorder that affects more than 2% of the population over 65 years of age. |
|
When cells replicate themselves many times over it is called proliferation. A starting population of stem cells that proliferates for many months in the laboratory can yield millions of cells. If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.
The specific factors and conditions that allow stem cells to remain unspecialized are of great interest to scientists. |
|
In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons.
In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. | |
|
|
Stem cells are important for living organisms for many reasons. In the 3 to 5 day old embryo, called a blastocyst, a small group of about 30 cells called the inner cell mass gives rise to the hundreds of highly specialized cells needed to make up an adult organism. In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues. |
|
stem cell research |
The successful generation of an unlimited supply of dopamine neurons could make neurotransplantation widely available for Parkinson's patients at some point in the future. |
|