Stem Cells Research - Stem Cells in Science, Medicine, Biology and Bioethics
stem_cells bioethics
  Site Home
  Previous Page
Sponsored Links
Stem Cells - Biology
Stem Cells - Medicine
Link Exchange, Links Swap, Reciprocal Link Trade

Section Navigation

bioethics

Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed.


Embryonic stem cells, as their name suggests, are derived from embryos. Specifically, embryonic stem cells are derived from embryos that develop from eggs that have been fertilized in vitro � in an in vitro fertilization clinic � and then donated for research purposes with informed consent of the donors.


stem cells

Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell).


stem cells

It has been hypothesized by scientists that stem cells may, at some point in the future, become the basis for treating diseases such as Parkinson's disease, diabetes, and heart disease. Scientists want to study stem cells in the laboratory so they can learn about their essential properties and what makes them different from specialized cell types. As scientists learn more about stem cells, it may become possible to use the cells not just in cell-based therapies, but also for screening new drugs and toxins and understanding birth defects.


Stem cells are important for living organisms for many reasons. In the 3 to 5 day old embryo, called a blastocyst, a small group of about 30 cells called the inner cell mass gives rise to the hundreds of highly specialized cells needed to make up an adult organism. In the developing fetus, stem cells in developing tissues give rise to the multiple specialized cell types that make up the heart, lung, skin, and other tissues.


Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell).


It is thought that PD may be the first disease to be amenable to treatment using stem cell transplantation. Factors that support this notion include the knowledge of the specific cell type (DA neurons) needed to relieve the symptoms of the disease. In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons.


stem cell research

Importantly, such information would enable scientists to grow embryonic and adult stem cells more efficiently in the laboratory. Up to Stem cells are unspecialized. One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions.


For example, are the internal and external signals for cell differentiation similar for all kinds of stem cells? Can specific sets of signals be identified that promote differentiation into specific cell types? Addressing these questions is critical because the answers may lead scientists to find new ways of controlling stem cell differentiation in the laboratory, thereby growing cells or tissues that can be used for specific purposes including cell-based therapies.


As scientists learn more about stem cells, it may become possible to use the cells not just in cell-based therapies, but also for screening new drugs and toxins and understanding birth defects. However, as mentioned above, human embryonic stem cells have only been studied since 1998.


The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described. Stem cells differ from other kinds of cells in the body.


This process is called characterization. As yet, scientists who study human embryonic stem cells have not agreed on a standard battery of tests that measure the cells' fundamental properties.


stem cell research

The embryos from which human embryonic stem cells are derived are typically four or five days old and are a hollow microscopic ball of cells called the blastocyst.


embryonic stem cells

In addition, several laboratories have been successful in developing methods to induce embryonic stem cells to differentiate into cells with many of the functions of DA neurons. In a recent study, scientists directed mouse embryonic stem cells to differentiate into DA neurons by introducing the gene Nurr1. When transplanted into the brains of a rat model of PD, these stem cell-derived DA neurons reinnervated the brains of the rat Parkinson model, released dopamine and improved motor function.


The primer includes information about stem cells derived from the embryo and adult. Much of the information included here is about stem cells derived from human tissues, but some studies of animal-derived stem cells are also described. Stem cells differ from other kinds of cells in the body.




7E6F3073-9887-4199-B09C-F75718B03F39
C8B6A194-6718-4226-859F-A15812B3927B
43248300-FA4E-4600-A141-6C80A29045EF
E77FA1D7-C29E-45BC-8379-4EBD2241AD25
7305C813-D9D4-4771-8744-0CE03970D521
2EA938F5-D203-482A-B6AF-15EE674FC0D5
15467C38-E472-48F9-A7EC-4E2AD424C63F
CF3151E9-C7A2-44FF-A7F4-33E34136A8A1
CB4763C6-C0EE-45C3-9D32-B9A32E57FE31
0657EE56-9602-49AF-8B17-504C4F796182
78E67B0B-2886-4121-AFE1-0602CA836584
FA6462D5-14E8-467C-AEBF-D617905D85B4
BF942E17-D42A-437B-8E1D-EE89EB7B7B3A
B429BD37-31A2-4868-B69D-A4B353345430
8CDF01AE-0491-4BE6-91A1-04E822B05DFE
5E37D445-5222-4B54-83D6-F1ADBFF24290
51C292AE-61C4-41AB-9726-096EAE855F4E
1E947455-9494-4935-AA67-A8A98943F5A5
889A1296-00A1-4630-8FC2-73CEB919CDC4
3363FB2D-7CE9-40B0-9F58-0D5EC9BE62E2
A07B8770-A947-4CD4-8CBD-05B7F96D9FA7
DEE4F58F-C67A-4B54-80B7-65ADBD36B249
B67964D5-F0C7-42A1-A0A2-8964E3473A4C
1DE20B84-89ED-4A20-8038-15B513215866
A3901853-9C81-4F87-A4A9-C581E176C0B2
2FC5064F-AFFE-4AA9-B6E0-C18EED933092
DC3938C5-790D-46E1-AB22-02C856339674
4BEC5FCA-6C16-45C9-994F-081D6DAFD18B
78754D28-C791-4F1B-9B12-A1862F1AF194
B2E0F7DC-1CE7-47B6-B030-B66F21FA77E0
11FAF851-3291-450C-0B2F-4A8BEE2F902E
A58B4497-D525-42D1-9AE9-3D88302043CF
53BFA402-4D29-47E1-B01B-A8C31BB6808D
E1726C62-2BB1-4B29-9082-51AFCB8AFB50
52C8F595-12A0-4DAF-0AEB-53C381D1E2BA
FF2F944D-3F10-4606-99F6-E96F4341BAEE
EB1D77D0-C271-4796-8FE4-B8C6AFAE9EE3
ECF12E0C-F8C3-4F8B-A5CF-35DC83416A28
42DAC8DD-6ABE-4130-B56B-0E05C931DCEF
1619E7EE-1BF1-4363-B46F-45EFF1A17E36
317D7D0C-75BD-40D8-B0D8-35C9D5C08AD0
2E3B9DC0-3D6B-4A63-A2E2-0C5723788307



ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

stem_cells | bioethics
Stem Cells are a Great Promise for the Future of Medicine!
Stem Cells Research
X -Popi - ICL