Stem Cells Research - Stem Cells in Science, Medicine, Biology and Bioethics
stem_cells bioethics
  Site Home
  Previous Page
Sponsored Links
Stem Cells - Biology
Stem Cells - Medicine
Link Exchange, Links Swap, Reciprocal Link Trade

Section Navigation

bioethics

stem cell research

Stem cells are important for living organisms for many reasons. In the 3 to 5 day old embryo, called a blastocyst, a small group of about 30 cells called the inner cell mass gives rise to the hundreds of highly specialized cells needed to make up an adult organism.


Oct-4 is a transcription factor, meaning that it helps turn genes on and off at the right time, which is an important part of the processes of cell differentiation and embryonic development. Examining the chromosomes under a microscope. This is a method to assess whether the chromosomes are damaged or if the number of chromosomes has changed.


stem cells

Also, the feeder cells release nutrients into the culture medium. Recently, scientists have begun to devise ways of growing embryonic stem cells without the mouse feeder cells. This is a significant scientific advancement because of the risk that viruses or other macromolecules in the mouse cells may be transmitted to the human cells.


Therefore, in order to develop such treatments scientists are intensively studying the fundamental properties of stem cells, which include: 1) determining precisely how stem cells remain unspecialized and self renewing for many years; and 2) identifying the signals that cause stem cells to become specialized cells. This primer on stem cells is intended for anyone who wishes to learn more about the biological properties of stem cells, the important questions about stem cells that are the focus of scientific research, and the potential use of stem cells in research and in treating disease.


It has taken scientists many years of trial and error to learn to grow stem cells in the laboratory without them spontaneously differentiating into specific cell types. For example, it took 20 years to learn how to grow human embryonic stem cells in the laboratory following the development of conditions for growing mouse stem cells.




7E6F3073-9887-4199-B09C-F75718B03F39
C8B6A194-6718-4226-859F-A15812B3927B
43248300-FA4E-4600-A141-6C80A29045EF
E77FA1D7-C29E-45BC-8379-4EBD2241AD25
7305C813-D9D4-4771-8744-0CE03970D521
2EA938F5-D203-482A-B6AF-15EE674FC0D5
15467C38-E472-48F9-A7EC-4E2AD424C63F
CF3151E9-C7A2-44FF-A7F4-33E34136A8A1
CB4763C6-C0EE-45C3-9D32-B9A32E57FE31
0657EE56-9602-49AF-8B17-504C4F796182
78E67B0B-2886-4121-AFE1-0602CA836584
FA6462D5-14E8-467C-AEBF-D617905D85B4
BF942E17-D42A-437B-8E1D-EE89EB7B7B3A
B429BD37-31A2-4868-B69D-A4B353345430
8CDF01AE-0491-4BE6-91A1-04E822B05DFE
5E37D445-5222-4B54-83D6-F1ADBFF24290
51C292AE-61C4-41AB-9726-096EAE855F4E
1E947455-9494-4935-AA67-A8A98943F5A5
889A1296-00A1-4630-8FC2-73CEB919CDC4
3363FB2D-7CE9-40B0-9F58-0D5EC9BE62E2
A07B8770-A947-4CD4-8CBD-05B7F96D9FA7
DEE4F58F-C67A-4B54-80B7-65ADBD36B249
B67964D5-F0C7-42A1-A0A2-8964E3473A4C
1DE20B84-89ED-4A20-8038-15B513215866
A3901853-9C81-4F87-A4A9-C581E176C0B2
2FC5064F-AFFE-4AA9-B6E0-C18EED933092
DC3938C5-790D-46E1-AB22-02C856339674
4BEC5FCA-6C16-45C9-994F-081D6DAFD18B
78754D28-C791-4F1B-9B12-A1862F1AF194
B2E0F7DC-1CE7-47B6-B030-B66F21FA77E0
11FAF851-3291-450C-0B2F-4A8BEE2F902E
A58B4497-D525-42D1-9AE9-3D88302043CF
53BFA402-4D29-47E1-B01B-A8C31BB6808D
E1726C62-2BB1-4B29-9082-51AFCB8AFB50
52C8F595-12A0-4DAF-0AEB-53C381D1E2BA
FF2F944D-3F10-4606-99F6-E96F4341BAEE
EB1D77D0-C271-4796-8FE4-B8C6AFAE9EE3
ECF12E0C-F8C3-4F8B-A5CF-35DC83416A28
42DAC8DD-6ABE-4130-B56B-0E05C931DCEF
1619E7EE-1BF1-4363-B46F-45EFF1A17E36
317D7D0C-75BD-40D8-B0D8-35C9D5C08AD0
2E3B9DC0-3D6B-4A63-A2E2-0C5723788307
897E4A46-CD86-4688-B3BF-FDDD21F8EA5B
E58C279B-A89C-4F0E-9E15-C4ECDC924F63
1FE57126-5B43-41ED-8B1C-73E0EA74F462
FB6E490E-D974-4237-B582-F7A58D394AE2
0C5D3B33-829F-4143-A4AF-00584C85BE8B
BEE0AEEB-6BC6-4B47-91A6-72C34792F9A1
9BB1BD17-5141-4903-09F6-9EAEB17F735F
5919CA9E-6FEB-404E-B74D-BBF914664A44
1EE0B063-A40E-437E-A349-00AB34A024D7
84BDD63A-EC00-4B61-9737-05813BA520DF
E4CC25E0-51C2-45F8-812E-00AF44C8D02F
C61F89AB-9C20-4708-99A1-009017757415
5B809878-91EC-44DC-96DF-14131D8FCC5D
4AD35CF1-B0A4-42FC-8F38-40DCBF1E6AC1
46B905EA-EFC3-48E2-9E39-0DFB4961EFBD
104B5EDB-6369-41E2-9B64-B5FFEDFAF663
122DD8F4-3E5D-49D1-B123-5F8F521ABA23
7BEEBB41-0A2D-4465-A71F-2A526D478B93
6BE61241-0E21-4FA7-91BD-0E742F8C30D4
A521A55E-837A-4E53-AE48-4C60E6211CAE
9F5F6388-E131-4475-AE2A-60342CC44F11
DE20C0D0-F372-4251-BA34-63A19CF4CB40
65A724E7-EAE5-41E7-B265-93BD85709DC1
1DC43DEC-0645-4531-A91B-0A88D549CAAC



ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

ICL's Comprehensive Frequently Asked Questions Data Bank

stem_cells | bioethics
Stem Cells are a Great Promise for the Future of Medicine!
Stem Cells Research
X -PopiLinx - 3001